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ABSTRACT 

The problem of computing the thermal stresses in a sandwich shell 
of revolution with a weak core is approached by computing separately 
a particular solution of the equations which involve the temperature 
distribution, and then superposing a solution for an edge-loaded shell 
to satisfy the boundary conditions. The component solutions for a 
shallow spherical shell are included in the Report. In order to retain 
the effects of transverse normal and shear strain, the governing equa- 
tions of equilibrium and the stress-strain relations are obtained by 
applying Reissner’s variational principle. The particular solution for 
the heated shell is obtained by an order of magnitude argument and 
is applicable for slowly varying temperature distributions only. The 
solutions for the edge-loaded shell indicate that the cross influence 
coefficients (rotation due to a force, etc. ) can be obtained from those 
of an equivalent isotropic shell, but that the direct influence coeffi- 
cients (displacement due to a force, etc. ) are substantially affected by 
the effect of transverse shear strain. The effect of transverse normal 
strain is appreciable only in the particular solution. 

1. INTRODUCTION i 

As the requirements for lightweight structure in air 
and spacecraft demand a consideration of sandwich con- 
struction, it is of increasing interest to be able to predict 
the thermal as well as the mechanical stresses induced 
in such structures. It is the purpose of this Report to 
present the equations describing a thin sandwich shell 
of revolution under such a combined loading; as well as 
a solution of such equations for the case of a shallow 
spherical shell. 

E. Reissner (Ref. 1) derives the complete set of equa- 
tions for the mechanical stresses in an unheated shell, 

using the principle of minimum complementary energy 
wherein the equations of equilibrium are introduced as 
restraints. As a principal contribution, it is noted that 
the effects of transverse normal strain and finite shear 
strain could be of great importance. 

The combined thennoelastic equations are given by 
Grigolyuk and Kiryukhin (Ref. 2). In that paper, the 
stress-displacement relations are obtained directly from 
Hooke’s Law, while the equations of equilibrium follow 
from an application of the principle of minimum poten- 
tial energy. However, as these equations are specifically 

1 
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derived for a sandwich shell with a sti€E core, the effects 
of transverse normal strain and finite shear strain are 
omitted. 

As the purpose of this Report is the formulation of 
equations describing a sandwich shell with a weak core, 
it was decided to proceed along the lines of Ref. 3 and 
use the Reissner variational theorem (Ref. 4) to develop 
the required equations into which the thermoelastic 
stress-strain law could be introduced. These equations 
are developed in Section I1 for axisymmetric deflection 
of a general shell of revolution acted upon by surface 
pressure, edge forces and moments and heated such that 
the temperature has a linear variation with the thickness 

coordinate. In the sections which follow, the solution is 
presented for a complete shallow spherical shell re- 
strained at the edge. 

The method of solution follows that described in Ref. 5 
for the isotropic shell. The complete solution satisfying 
the equations of equilibrium and some prescribed 
boundary conditions is formulated as the sum of a par- 
ticular solution satisfying the thermoelastic equations and 
a solution for an edge-loaded unheated shell. The latter 
solution contains the edge shear force and meridional 
bending moment as parameters. These parameters are 
determined by the requirement that the composite solu- 
tion must satisfy the two boundary conditions at the edge. 

II.  GENERAL EQUATIONS 

The equations describing the stresses and displace- 
ments of a thin sandwich shell of revolution are derived 
below using the Reissner variational theorem (Ref. 4). 

With the location of a point in the shell being given in 
terms of the three parameters 4, e, [ as shown in Fig. 1, 
the orthogonal line elements in a surface [ = constant are 

ds$ = E ,  (1 + UR,)  d+ ds, = R, sin 4 (1 + [ / E 2 )  de 

the general volume element is 

6v = R, R, sin + (1 + [/RJ (1 + [/&) d+ d6 d[ 

and the appropriate form of the variational theorem is 

where S is the surface on which the stresses p+,  p ,  are prescribed, 

F = a++ E+ + u e e  €e + + T+C y+c - f 
and 

If the face material is isotropic, the stress-strain law is 

1 
E ,  = [aCC - v (a+$ -t oee) ]  + aAT 

2(1 + v) 
Y$S = E T+< 

I 2 
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so that 

If the core material is transverse orthotropic, the stress-strain law is 

1 
Y96 = 79, 

6 

Fig. 1. The geometry of an element of the shell 

3 
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If we now make a soft core hypothesis that the contribution to the function F of the normal stresses u++, uee of 
the core is negligible in comparison to that of the face material, i.e., we require 

h (u++)core 

t (c++)fsce  ta (u++)face 

-- hac (@++)core (( 1 --It1 

then, the form of the function F for the core becomes 

Following Ref. (3), let the displacements in the core be taken in the form 

25 u+ (4, e)  = u (4) + P (4 

In this way, we introduce a transverse normal strain that has a linear variation through the thickness. 

If the thickness of the face material is small in comparison with that of the core, it is reasonable to expect that the 
and are continuous with the displacements of displacements in the face are independent of the thickness variable 

the core. Hence, take 

for the upper face 

for the lower face 

U + = U : + ) = U + P  

u+ = q-’ = u - p 
W = W ( + ) =  w + E , + w ,  

t w = W(-) = w - E, + 0, 
With the appropriate strain components in the form 

aw 
= al’ 

it follows that 

4 
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L 

where ( )' denotes daerentiation with respect to (4). 

Finally, let us take the following temperature distribution 

and stress distribution 

for the lower face 

U<C = 0 

u99 = (4) 
Gee = (4) 

7*t = Trn(+) ( 1 + 'I2: ')/(I + t/&) 

as being a reasonable form consistent with the assumed form of the strain distribution. In this way, d e  average trans- 
verse normal strain in the core (&) is compatible with the stress resultant (S) and the linearly varying component of 
the transverse normal sirain (om) is compatible with the stress resultant (T) .  The stress resultants in the core are 
essentially those suggested in Ref. (3). 

5 
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Thus, accounting for a surface loading as well as edge loading on the edges + = +,, +z (+z>+l), the final form of 
the variational theorem is as follows: 

j z r  ( R~ R, sin + (1 + 
e = o  

On substituting the assumed form for the stresses and displacements and carrying out the indicated integration over t 
and subsequent variation, we obtain the following set of equations as the Euler equations of the variational problem: 

1 - (h+t)/2R2 E 
Ri h+t R,  + Rz + h2 + 2ht + 4t2/3 u&! - v u(-) t aET(-) = - (U' - + w - em + urn) 

4Ri Rz l - -  
99 

2 Ri R2 

E 1 - (h + t)/2R1 
u(-)- ee vu$$ (-) +aET(-)  =-[ (U- /3p)cot++w- '%1+%] Rz h + t R, + R2 + h2 + 2ht + 4t2/3 

4Ri Rz l - -  2 R1 Rz 

= 2p + y w J  Ri - u + w', t + h  

6 
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where 

q* = 9 (1 + *) ( 1  + *) 

7 I 
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111. AN EDGE-LOADED, COLD, SPHERICAL SHELL 

For the special case of an unheated spherical shell 
loaded at the edges only, the general equations can be 
rewritten in the following form 

2t G, 
GC h + t  

= 2 p + -  h + t  ( W ' - U ) + ~ u &  h + 3t 
a 

a 
p + % =  E t  (h + t )  ( M &  - ' M,*,) 

a 
Et (h + t )  (M:e  - ' M t s )  pcot 4 + = 

3 E L  = 5 S - Th/35a 

o, Eg = - (T - 3Sh/a) 1 
14 

The quantities Q+, N e + ,  N e e  are true stress resultants as 

h + t + -) t2/6a - u;$(l h + t  

h + t  
- - t+;)(l h + t  + - h + t  

2 242 

8 
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As we expect the operation of merentiation with 
respect to 9 to change the resulting order of magnitude 
of the term d i f € e r e n ~ t d  i.e., 

dQg = Q+O(u/6) u/6 > 1 
4 

where 6 is the meridional distance over which changes 
in the variable are appreciable, it follows that 

from what are expected to be the dominant terms. These 
relations are consistent only if 

6' = u2 h' 0 (1) 

so that 

If we limit our analysis to shells such that 

-- E t h d  
E ,  

the contribution of cy, to the stress-strain relations is neg- 
ligible as well as the contribution of G, to the moment- 

curvature relations. Thus, the stress-strain and moment- 
curvature relations can be simplised to read 

Following the analysis for the classical isotropic shell, 
it is convenient to reduce this set of equations to a pair 
relating the dependent variables 8, Qe. With the follow- 
ing identity 

dw &O) 

- 4 - u = .[-+ de (€?' - r ) O , ) m # j  
it follows that 

where 

d 2 (  L (  ) = -  &* +cot+- d (  ) - cot'+( ) & 

Further, the equation of moment equilibrium becomes 

Finally, in terms of the parameters 

the equation for determining both Q+, 8 becomes 

At this stage, it is evident that the above equations are analogous to those of Ref. (6) which describe the bending of 
a shell of transverse isotropic material wherein only the correction for finite shear strain is retained. In the following 
sections, the results of Ref. (6) will be applied to the calculation of the influence coefficients for shallow, spherical 
shells. 

9 
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IV. SHALLOW SPHERICAL SHELLS 

In this section, the equations developed for an edge- 
loaded, cold spherical shell are specialized for shallow 
opening angles. In this case it is justifiable to replace 
cot 9: 

cot q5 = l/+ 

and so obtain 

d Z 0 , 1 d O  0 W-w 4J dq5 9 2  

As shown in Ref. 6, the form of the solution of the 
bending equations depends on the relation of the param- 

eter K to the critical value given by 

K* 4p2 [dl + (Y/2p2)' f V/2pp"] 

For K < K * ,  the quantities of interest are 

Q + / 2 E t  = C, U ,  + Cz VI + C3 ~1 + C, 01 

2fi - C,  [(v - K/2) U ,  + I k 12 V, sin 281 

+ C,  [(Y - K/2) V, - I k l 2  U ,  sin 281 

+ C, [(v - K/2) u, + I k 1, v1 sin 281 

+ C, [(v - K/2) o1 - I k 1, u1 sin 281 

h + t  

Un COS B - Vn sin 8) + 1 
(Vn cos 0 + U ,  sin e) - 1 

k 1'sin 28 [ - 5 + I k 1 (V, COS 6 + U ,  sin 8) 
9 

+ I k 1 (Un cos 8 - vo sin 8 ) ]  + I k l 2  sin%[ - '. + I k 1 (u, sin 8 + oo cos 8) 4J 

+ 1 k I (u, sin 8 + 0, cos B ) ]  - I k ('sin 28 [ - - u1 + 1 k I (u, cos 8 - vo sin 8) 
9 

1 + I k I ( U ,  cos B - V, sin 6 )  ] + C, [ - " - + I k I (V, cos 8 + U ,  sin 8) 
9 

1 + C, [ - 3 + I k I (u, cos 8 - oo sin 6)  + I k I (u, sin 0 + oo cos 8) 

The functions U,, V,, s . 1 ,  o1 are the real and imaginary parts of the Bessel functions of complex argument defined by 

1 0  
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where 

are the modified Bessel functions of the first and second kinds respectively. 

where 

1: = K / 2  + d(K/2)' - VK - 4p4 

1; = K / 2  - f l K / 2 ) 2  - VK - 4p' 

The variation of the factors Ikl, Z1, 1, with K for a thin shell is presented in Fig. 2. 

11 
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I .S 

1.0 

0.5 
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I 
I 
I 
I 

K/K * 
Fig. 2. Coefficients of the independent variable 

V. THE INFLUENCE COEFFICIENTS 

The particular concern of this section is to obtain the 
displacements at an edge due to forces and moments 
applied at that edge. In particular, let us consider a shell 

closed at the apex and loaded at the outer edge + = +b 

(Fig. 3). The constants C,, Cz, are then chosen so 
that the solution is regular at the apex and satisfies the 
boundary conditions that 

M M;g ( 4 b )  
The equation for H simplifies as, for loading with no vertical resultant, we have 

Ng = Qg cot + 
The horizontal displacement a t  the edge follows for each particular case of K ,  and is given in general by 

ah('#' = +b) = [w(t = 0) sin 4 + U+([ = 0) cos +]I $b 

= a ( + I , )  sin +b 

a (+ dQ+ - v Q + ) [  g b  
2Et 

It should be noted that M&, is not the true bending moment, but that the difference is negligible provided that 

t'/& Q: - 
h + t  

12 
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a 

( a )  AN ELEMENT OF SHELL 

(b)  EDGE L6AolNG OF A 
COMPLETE SHELL 

Fig. 3. Sign convention 

In particular, for K < K * ,  we take Cs, C, = 0 and choose C,, C, to satisfy 

1 
9b 

H/2Et = - [ C1 U1 + Cz VI] 

2 ( 1  Et (h - ? ) M a  + t)' = & I ( $  -v)[c:(z,-- - 9 I , )  

13 i 
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2Ef a h  - 
aH 

2.44 1 

2.777 

3.227 

Finally, for K > K * ,  we take c2, = 0 and determine Ci, C; to satisfy 

H/2Et = - [cl z1(& 4) f c; z ~ ( l ~  4)] I $=$b  
4 b  

Et (h f t l '  p h  

I 1  - v2) Ma2 
x 10-2 

-0.361 2 

-0.3574 

-0.3493 

In order to evaluate the effect of the shear parameter K 

on the influence coefficients, calculations were performed 
taking 

p2 = 100 V = 0.30 lpb  = 20.26' 4 4 3  Eilh + I) j3 
K / K *  

Ih-kt) H I 1  - v 2 )  Ma 

0.1737 -72.21 0.1128 

0.5000 -71.37 0.1 266 

1 .ooo -69.64 0.1434 

. 

e = 50°, 60°, 90" 

The values of the Bessel functions of complex argument 
were obtained from Ref. 7. The results of the calcu- 
lations are presented in Table 1. The corresponding dis- 
tribution of the stress resultants is presented in Figs. 4-9. 

Fig. 4. Bending moment distribution, applied moment 

Table 1. Influence coefficients 
(p' = 100; V = 0.3; 4b = 20.26O) 

Fig. 5. Bending moment distribution, applied force 

1 4  
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* 

I 2 3 4 5 6 

R= I t 1  9 

Fig. 6. Transverse shear distribution, applied moment 

0 

-0 

* -0. 
N 
Q -s 
r" -0. 

0 

-0.. 

-0.  

-0.1 

Fig. 8. Circumferential unit force, applied moment 

0. 

0. 

0. 

P 0 

0 

-0 
I 2 3 4 5 6 

R= Mi+ 

Fig. 7. Transverse shear distribution, applied force 

R= Irl+ 

Fig. 9. Circumferential unit force, applied force 
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VI. HEATING OF AN UNRESTRAINED SHELL 

The analysis of the stresses and deflections produced 
in a restrained shell will proceed as suggested in Ref. 5. 
If the temperature distribution is sufficiently smooth, a 
reasonably accurate solution for a heated unrestrained 
shell can be deduced from an order of magnitude analysis 
of the equations. The complete solution is then formulated 

as the superposition of this thermal solution on a solution 
of an edge-loaded cold shell wherein the edge loading is 
chosen so as to satisfy the boundary conditions of the 
original problem. It is convenient to study separately the 
effects of middle surface heating and a temperature 
gradient. 

VII. MIDDLE SURFACE HEATING ONLY 

The effect of middle surface heating can be investigated 
separately by setting TI = 0, T(+)  = T(-)  = To.  As there is 
no surface loading, we find cj;),,+) = 0. Anticipating that 
the dominant factors in the development of the solution 
are the effective middle surface strains 

1 1 
€?) = 7 (U' + w )  E;*)  = - (V  cot c#J + w )  

U 

it is convenient to write the Euler equations in the follow- 
ing form: the stress-strain equations 

T +- 3Sh 
cy, = -- 14E, 

the moment-curvature equations 

[ (p + Y P C O t + )  + (1 + +m] 
Et ( h  + t )  
a (1 - Y ' )  

M& = M T  + 

and the equations of equilibrium 

16 
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where 

aEt (h + t)" 
TO 2a 1 - v  

MT= --- 

For the particular case To = Const, a satisfactory solution can be seen to be given by 

& Q+, N+, N e ,  T = 0 

$'), = aTo 

= a; hTJ2 o,=-- 3h s 14Ep 

For the general case, if we make the assumption that the temperature distribution is slowly varying, i.e., the deflec- 
tions and stresses vary significantly over distances comparable with the radius a, it follows that the process of 
differentiation with respect to 4 does not change the order of magnitude of the term differentiated. Thus, it follows 
from the above system of equations that 

and 

Further, we find that a satisfactory solution is given by 

UT0 q', q o )  = 

Once B is determined, the remaining variables follow directly. 

As an example, consider the case where 

aEt (h + t)* 
2a I - v  T,* To = T,*cos+ M: = -- 

With -- " - a T,* sin 4, it follows that 
h + t  

1 
2 4n = -aa,hT,* cos4 

17 
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VIII. A TEMPERATURE GRADIENT ONLY 

The effect of a temperature gradient can be investigated separately by setting T o  = 0, T ( + )  = - T ( - )  = Tlh/2 .  With 

the Euler equations take the following form: the stress-strain equations 

h + t  

h + t  

E?) = (Ne+ - v Nee)/2Et  + a hTl - 4a - wm/u 

E:') = (N88 - v N++)/2Et 4- ahT, 7 - um/a 

wm = a< h2 T l / 8  + - (T - 3Sh/a) 
14El 

and the moment-curvature equations 

( h + t )  [p' + "p cot 4 + (1+") E"] M & , = M T +  a 

[ p  cot 9 + VP' + (l+") E"] 
Et ( h + t )  M,*, = MT + (l--v2) a 

The equations of equilibrium are unchanged. 

For the special case T I  = Const, a satisfactory solution can be seen to be given by 

P, Q+, N + + ,  N e , ,  T = 0 

M & ,  M z 8  = M T  

sz-- M T  
h + t  

For the general case, following the argument given in the previous section for a sufficiently smooth temperature 
variation, it follows that the bending moments are the dominant factors in the development of the solution. Thus, 

= Q+O(l) ,  

= Q+ KP' /K*  0 (l), 

if ~ Y / / K *  ,< 0 (1) h + t  

if K P ' / K *  > 0 (1) 

and 

M :+/a, MB*, /a, N++,  N e e  

1 8  
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Further, we find that a satisfactory solution is given by 

Once Q+ is determined, the remaining variables follow directly. 

As an example, consider the case 

1 9  
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IX. EXAMPLES 

Let us combine the previous analyses to obtain the 
solution for a restrained shell that is heated to a uniform 
temperature T o .  The type of restraint will correspond to 
fixing a vertical element of the core centerline, i.e., re- 
quiring 

Using the influence coefficients in Table 1, we find for 
K = K* that 

H / a E t T ,  = - 0.2911 M / a E t a T o  = - 0.3534 X lo-' 

a h ,  p =z 0 

If ai" ) ,  p("), 6;") , p(y), , p(') are taken to be the 
horizontal displacement and rotation at the edge due to: 
the induced shear force, the induced bending moment 

values of the induced force and moment H ,  M can be 
determined from the requirements that 

at 4 = #Jb For a shell with the same kind of restraint, that is heated 
with a uniform temperature gradient T,, a similar anal- 
ysis leads to A 

h + t  ab 
h and the uniform temperature, respectively, then the H = - 0.07277 X - 

a 

h + t  M = - 0.8834 X X E t T ,  h' X ( a  - h - 2) 

it follows from these equations that and 

X. DISCUSSION 

In the first place, let us note that the deflections of the 
unheated shallow spherical shell presented above show 
the same correspondence with those of the isotropic case 
that is familiar in calculations wherein shear strain is 
neglected. Specifically, if one compares the influence 
coefficients given in Table 1 with those of Ref. 8, there 
will be a correspondence provided that we replace the 
thickness of the isotropic shell h,,, by $J (h + t )  and 
the Young's modulus of the isotropic shell ( E , s o )  by 
( E h ) , , ,  = 2Et .  In particular, following Ref. 8 and noting 
that the quantity (2p/h+t) corresponds to the rotation 
(V), one finds using the asymptotic forms that 

-- - 2p4; = 2.50 2Et8j, 
aH 

20 
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Thus, it is apparent that the effect of shearing strain, as 
measured by the parameter d a * ,  is most pronounced in 
the direct deflections, i.e., the horizontal displacement 
ah due to an applied shear force H and the rotation ,L? 
due to an applied moment M. The cross deflections, i.e., 
the horizontal displacement due to an applied moment 
and the rotation due to an applied shear force, appear to 
show little dependence on this parameter. 

As far as the particular solutions for the heated shell 
lire concutrneci, &ere appear to exist some similarities 
with the solution for the isotropic shell given in Ref. (5). 
For middle surface heating only, the middle surface 
strains (E:), E:)) and the rotation (B) are identical with 
those of the iwtropic shell. However, here the similarity 
ends, as the remaining quantities are strongly dependent 
on the transverse material properties. 

For the case of a temperature gradient only, the middle 
surface strain and the rotation as well as the remaining 
quantities depend on the transverse material properties 
and hence the solution is not similar to that of the isotropic 
shell. 

Further, it should be noted that the transverse normal 
strain is important in defining the bending moments for 
middle surface heating only, and the effect of finite shear 
strain is important in defining the edge rotation for a 
temperature gradient only. Thus, it can be concluded 
that the thermal stress solution for a sandwich shell with 
a soft core is strongly dependent on the effects of trans- 
verse normal strain and finite shear-strain. 

Regarding the limitations of the above theory, let us 
review the assumptions that were made in developing 
the above partial solution. As was noted in the analysis 
of the unheated shell, the absence of the effect of trans- 
verse normal strain (as measured by E,,,, om) depends on 
the existence of an edge zone wherein the bending effects 
predominate. Specifically this requires that p B 1, and 
that the range of (a) be such that the coefficients ( 1  k I, 
11, 12) in the governing equation for bending do not 
change their order of magnitude. It follows from Fig. 3 
that, for a/a* < 2, these coefficients maintain the required 
order of magnitude. Apparently, for a greater value of 
the shear parameter (corresponding to a softer core ma- 

terial), one of the solutions would be so slowly varying 
as to invalidate the requirement that the edge zone be 
much narrower than the radius of the shell. 

Further, additional terms were neglected on the as- 
sumption that the core modulus in the transverse direc- 
tion (E,) was not too small, and the core and face material 
thicknesses were small enough so that 

-- E thd 
E ,  a* 

Finally, for the assumed form of the stresses and dis- 
placements to be realistic, i.e., to be able to assume that 
these quantities in the face material are independent of 
the transverse coordinate (l), the thickness of the face 
material relative to the core must be small enough so that 

t /h  < 1 

In summary, the reduction of the original set of equa- 
tions for an unheated spherical shell to the more simple 
form that was actually solved requires that 

t - < I  h a/a* < 2 

On the other hand, the analysis leading to the par- 
ticular solution for the heated shell requires that there 
be no edge zone, i.e., the temperature variation with (4) 
must be small enough that all displacement and stress 
variables vary appreciably only over distances compar- 
able with the radius of the shell. The solution which is 
presented as being satisfactory shows the same basic 
assumption with regard to thickness as that for the un- 
heated shell, i.e., p B 1, but requires also that a, a, be 
such that 

Finally, let us determine the criteria necessary for sub- 
stantiating the soft-core hypothesis that the meridional 
and circumferential stresses in the core are much less 
than their counterparts in the face material. Following 
the stress-strain law for the core material, we find 

vc E ,  E< - (a, + v2 a,)E,AT + 1 + vc 
1 

E ,  
E< 

u++ (core)  

1 - v, - 22- 
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where the strains (E,, E + ,  E@) are the total strain, i.e., the superposition of the contributions from the edge-loaded un- 
heated shell and the particular solution for the heated shell. The stress in the face material can be written as 

where the superposition over the solution of the unheated shell and over that of the heated shell is indicated. How- 
ever, following the analysis for the unheated shell, one notes that 

M,*,/h 
N”’GO(1) -- - 0 (1) M/h H 

M 
E, EC (I: = 0) = ah 0 (1) 

so that 

Thus, for an evaluation of the two meridional stresses, one must compute the value of ( H ,  M) corresponding to the 
boundary conditions for an appropriate temperature distribution. 

For a restrained shell, following the method of anaIysis described in Section IX, the equations for determining H ,  
M are of the form 

M H 0 (1) + 0 (1) = E t  € A o )  I T  sin $Jb 

M Et H 0 (1) + - 0 (1) = -p / T  
h Ph 

where E:) IT, PIT are the thermal strain and rotation respectively given by the particular solution. Thus, we note 
that H ,  M/h are of the same order of magnitude, and that this magnitude depends on the terms E:) I T ,  P IT.  

Due to middle surface heating, we have 

€ A o )  I T  = a To 

so that 

Also, for the general case, 

H = a E t  To  sin +b  0 (1) 

where 

a E t  (h+t)2 
2a 1--v To M ,  = - -- 
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Thus, the meridional stresses for middle surface heating become 

u(+) = a ET, sin &, 0 (1) 
99 

Due to a temperature gradient only, we have 

=--- 1 dMr K/P (if K ~ ~ / K *  3 0 (1) , a & K* 

so that 

0 (1) M/h = L a E t h T , -  
K* P 

Also, for the general case, 

MT "?$I T = 7 (l) 

where 
h (h+t)  
2 (17)  M T = -  aEtT, - 

Thus, the meridional stresses for a temperature gradient only become 

(+) = aEh T ,  0 (1) 
O+9 

Et 
0 (1) 4- 0 (1) + v< - 0 (1) 

E& 
aE, T I  hz /a  

Ec 1 - vc - 2v2- 
E, 

099 (6 = 0 )  = 

Finally the requirements of the soft core hypothesis can be formulated in terms of the ratio of the meridional stresses. 
For middle surface heating only 

if a, a, are the same order of magnitude; and, for a temperature gradient only 

Thus, as in the case for the unheated shell, the soft core hypothesis can be applied essentially whenever EJE a 1. 
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NOMENCLATURE 

Young's modulus of face material 

Young's modulus of core in surface 
5 - const 

Young's modulus of core in transverse 

transverse shear modulus of core 

thickness of core 

modified Bessel functions 

direction 

- K / 2  + id4p4 f VK - ( K / 2 ) '  

K / 2  kd(K/2) '  - VK - 4p' 

unit moments (for t / a  << 1) 

unit forces 

surface pressure 

unit transverse shear force 

principal radii of curvature of surface 

components of a,< 

thickness of face material 

components of temperature distribution 

component of meridional displacement 

meridional displacement 

components of Bessel functions of 
complex argument 

component of transverse displacement 

coefficient of thermal expansion of face 

coefficient of thermal expansion of core 
in a surface 5 - const 

coefficient of thermal expansion of core 
in transverse direction 

component of meridional deflection 

horizontal displacement of middle 
surface 

strain components 

components of transverse deflection 

transverse coordinate 

4 m 2  

I k I z  cos 28 = - K / 2 ;  I k I'sin 28 
= d4p' + V K  - ( K / 2 ) '  

4p2 [ dl + (v/2p')' + (v /2p' ) ]  

Poisson's ratio of face material 

Poisson's ratio of core in a surface 
t; - const 

Poisson's ratio of core in transverse 
direction 

u++, wee, a,<, T+< stress components 

7m component of transverse shear stress 

polar angle;- d = ( )' 
$J d4 - 
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